Liferay DXP profile for Dynatrace

This document provides description of Dynatrace profile created for monitoring of Liferay DXP

installations.

Version

Liferay version

Dynatrace Version

Created by

Created on

1

DXP (7.0 gat)

6.3.7 build 1007

Brian Wilson, Josef Sustacek

Aug 12, 2016




Table of Contents

Table of Contents
Business Transactions
Portlet - [portlet name] - [portlet phase]
CMS Page Request
CMS Page Request by Page Type - [page type]
CMS Page Request by Request Type - [portlet phase]
Portlet [phase
CSS Client Side
CSS Server Side
JavaScript Client Side
JavaScript Server Side
Liferay Login Request (non-SSO)
Liferay Login Request (SSO)
Liferay Logout Request
Liferay Signed-in User - Non-UEM
Liferay WebServer Document Request
Liferay WebServer Image Request
User Action Response Size
Workflow Engine - Kaleo GraphWalker Message Received
Liferay HTTP API Request
AJAX Request
Measures
Business Transaction measures
Portlet measures
Liferay Signed-in User measures
CMS pages measures
CSS and JavaScript measures
Liferay Login Method (non-SSO)
Liferay Login URI (SSO)
Liferay Logout Request
Liferay WebServer Documents URI
Liferay WebServer Images URI
XHR by X-Requested-With header
Liferay - EnCache - [cache name] - [cache metric]
Database pool measures
Custom JMX category
Liferay - JDBC Pool - C3p0, All PooledDataSource beans (sum) - [metric]
Liferay - JDBC Pool - HikariCP, All Pool beans (sum) - [metric]
Liferay - JDBC Pool - TomcatJdbcPool, All Pool beans (sum) - [metric]
Tomcat category
JDBC Pool - TomcatJdbcPool "jdbc/LiferayPool" - [metric]




JDBC Pool - TomcatJdbcPool "jdbc/LiferayCounterPool" - [metric]
JBoss category
JDBC Pool - ManagedConnectionPool, all Pool beans (sum) - [metric]
Thread pools measures
Tomcat
ThreadPool - Connector "ajp-nio-8009" - [metric]
ThreadPool - Connector "http-nio-8080" - [metric]
JBoss
ThreadPool - all pools (sum) - [metric]
Method execution time
PortletContainerUtil.[method name] Time
Liferay Search Engine - [method name] Time
Agent Sensors Packs and their configuration
Application Servers (Tomcat, JBoss)
UEM Configuration
Java Code Instrumentation (Sensors)
com.liferay.portal.kernel.portlet.PortletContainerUtil
render()
processAction()
serveResource()
com.liferay.portal.kernel.security.auth.session.AuthenticatedSessionManagerUtil
login()
com.liferay.portal.workflow.kaleo.runtime.internal.graph.messaging.PathElementMessag
elistener

doReceive()

com.liferay.portal.servilet.FriendlyURLServlet

service()

com.liferay.portal.search.facet.internal.faceted.searcher.FacetedSearcherimpl

doSearch()

com.liferay.portal.kernel.search.IndexSearcherHelperUtil

search()

com.liferay.portal.search.elasticsearch.internal.ElasticsearchindexSearcher

search()

com.liferay.portal.search.solr.internal.SolrindexSearcher
search()
Dashboards
Liferay Overview
Liferay [portlet type] Overview
Liferay Search Overview
Liferay CMS Page Performance Analysis
Liferay HTTP APl Request Analysis
Liferay Operations Overview
Liferay Ehcache Metrics




Liferay Process Monitoring
Liferay Database Performance
Resources




Business Transactions

The profile contains custom Business Transaction which mainly serve as a way to classify
PurePaths (with Web Requests) into various groups based on how Liferay will be handling
these PurePaths. Following sections will describe most important transactions.

Most of the Business Transactions use one or more custom Measures.

Portlet - [portlet name] - [portlet phase]

We have identified a group of core Liferay portlets, which are most commonly used in Liferay
deployments (by end users). We are interested in knowing when a portlet request for one of
these portlets has been sent to Liferay and how it was processed.

Most of the portlets use Liferay MVC framework as their implementation and transactions then
split on the significant portlet parameter which was used to form the portlet URL. For action
requests it is the action name (javax.portlet.action), for resource requests it is the resource ID
(p_p_resource_id). For render requests, there are no splits defined, since most of the time,
portlets are rendered with implicit params and it's impossible to setup a measure in Dynatrace
with default value returned when not computed for given PurePath.

The Business Transactions are named with the pattern Portlet - [portlet name] - [portlet phase].
The third part, [portlet phase] covers one of the portlet phases, as declared by JSR 286:

e action processed - action phase

e resource served - resource phase

e view rendered - render phase

Not all selected portlets have Business Transactions for all the portlet phases. Some portlets
are not using the missing phases or they are used only sporadically by end users.

Examples of created Business Transactions:
Portlet - Asset Publisher - resource served
Portlet - Asset Publisher - view rendered
Portlet - Calendar - action processed
Portlet - Calendar - resource served
Portlet - Calendar - view rendered

Portlet - Search - view rendered

Business Transactions were defined for these core portlets:

Portlet Portlet name (ID)

Asset Publisher com_liferay_asset publisher web_portlet AssetPublisherPortlet




Blogs com_liferay_blogs_web_portlet_BlogsPortlet

Calendar com_liferay_calendar_web_portlet_CalendarPortlet
Documents and Media com_liferay_document _library_web_portlet DL Portlet

Media Gallery com_liferay_document_library_web_portlet _IGDisplayPortlet
Message Boards com_liferay_message boards_web_portlet MBPortlet
Search com_liferay_portal_search_web_portlet_SearchPortlet

Sign In com_liferay_login_web_portlet_LoginPortlet

Web Content com_liferay _journal_web_portlet_JournalPortlet

Web Content Display com_liferay journal_content_web_portlet_JournalContentPortlet
Wiki com_liferay_wiki_web_portlet WikiPortlet

Wiki Display com_liferay _wiki_web_portlet WikiDisplayPortlet

CMS Page Request

Tags any PurePath containing Web Request which will be handled as a request for Liferay
Content Management System page. The typical Liferay CMS page contains a set of portlets and
belongs to some Liferay site or organization's site.

Liferay CMS page URIs typically start with /web, /group or /user, but when virtual hosts are used
for some Liferay site, these might be shortened to contain just the friendly URL of the page.

Split is made on the internal friendly URL of the request, the way Liferay servlets see it. It is
always the full (longer) version of the URI, not shortened by a virtual host filter. Also, the split
transformation removes any portlet friendly URL mapper part if present at the end of the URI. Al
Liferay’s portlet friendly URL mappers are delimited by /~/in the URI.

For details on virtual hosts and portlet friendly URL mappers, see Liferay documentation or
FriendlyURLServlet section.

CMS Page Request by Page Type - [page type]
Each of these Business Transactions matches a subset of PurePaths tagged as CMS Page
Request, based on the type of the targeted Liferay group and layout set. We classify the CMS
pages into three categories based on this type, which translates into three transactions:
e CMS Page Request by Page Type - Private Site Page
o private pages of any Liferay site
o URI pattern: /group/*



e CMS Page Request by Page Type - Private User Page
o private pages of any Liferay user
o URI pattern: /user/*
e CMS Page Request by Page Type - Public Page
o public pages of any Liferay site or user
o URI pattern: /web/*

There is no split on these transactions, CMS Page Request transaction defines the split and will
match every PurePath matched by any of these transactions.

CMS Page Request by Request Type - [portlet phase]

Each of these business transactions matches a subset of PurePaths tagged as CMS Page
Request. Given transaction is matched if at least one portlet has entered given portlet phase
during processing of the PurePath.

We recognize there portlet phases for CMS page requests, which translates into three
transactions:
e CMS Page Request by Request Type - Process Portlet Action
o portlet action phase
e CMS Page Request by Request Type - Render Portlets
o portlet render phase
e CMS Page Request by Request Type - Serve Portlet Resource
o portlet resource phase

There is no split on these transactions, CMS Page Request transaction defines the split and will
match every PurePath matched by any of these transactions.

Transaction for portlet event phase was not created due to lack of its use in core portlets. If
needed, it can be added by following the pattern and using the measure on the method
PortletContainerUtil.processEvent () as needed. Sensor for this method might need
to be activated in Liferay Sensors configuration.

Please note that one PurePath can be processing both action and render phases. This happens
when a portlet action URL is processed and the executed portlet action method does not send a
redirect to render phase. Most core Liferay portlets are sending the redirect, to prevent
accidental re-submission of forms. Since portlet events are sent from action phase, also event
phase can be in one PurePath with action phase.

Portlet [phase]

Each of these Business Transactions covers execution of one portlet phase (JSR 286) of any
portlet deployed into Liferay DXP. The portlet does not have to be processed in the context of a
CMS page, for example if ajaxable is set to frue for given portlet, it can be rendered on AJAX
URI /c/portal/render_portlet without any theme or layout decorations.



Three Business Transaction belong to this group:
e Portlet action processed
e Portlet view rendered
e Portlet resource served

The transactions are capturing the portlet container method time (not whole PurePath time).

The split is done on portletid for for all transactions. For instanceable portlets, this includes the
instanceld.

For the same reason as in CMS Page Request by Request Type - [portlet phase], the
transaction for portlet event phase was not created, but can be added if necessary.

CSS Client Side

Tags any User Action which involves loading of a CSS file from the server. This could either be
a static CSS file (*.css) or dynamic CSS content assembled by Liferay servlet (e.g. *.jsp
generating a CSS content).

CSS Server Side

Tags any PurePath containing Web Request which is serving a CSS file from server. This could
either be a static CSS file (*.css) or dynamic CSS content assembled by Liferay servlet (e.g.
*jsp generating a CSS content).

JavaScript Client Side

Tags any User Action which involves loading of a JavaScript file from the server. This could
either be a static JavaScript file (*,js) or dynamic JavaScript content assembled by Liferay
servlet (e.g. /combo/ generating a JavaScript content).

JavaScript Server Side

Tags any PurePath containing Web Request which is serving a JavaScript file from server. This
could either be a static JavaScript file (*,js) or dynamic CSS content assembled by Liferay
servlet (e.g. /combo/ generating a JavaScript content).

Liferay Login Request (non-SSO)

Tags any PurePath which will be authenticating the user into Liferay using username and
password provided by the user. Uses code instrumentation on Liferay’s core class
AuthenticatedSessionManagerUtil.login().

This Business Transaction does not have a split on username. Data is stored in Performance
Warehouse and the set of distinct usernames could be very large. For one PurePath, the
username can be retrieved by drilling down through the call stack of the PurePath.



Liferay Login Request (SSO)

Tags any PurePath containing Web Request which will try to authenticate the user using one of
the Liferay SSO handlers or Remember Me cookies. The exact set of handlers depends on
Liferay configuration. Uses matching on URI /c/portal/login.

Please note that Remember Me authentication will also be used on any CMS page (/web, /user,
/group), so not all auto-login requests using Remember Me cookies will be tagged with this
Business Transaction.

This Business Transaction also does not have a split on username, for the same reasons as
Liferay Login Request (non-SSO) mentioned previously.

Liferay Logout Request
Tags any PurePath containing Web Request which will sign the user out of Liferay DXP. Uses
matching on URI /c/portal/logout, which covers both SSO and non-SSO authenticated users.

This Business Transaction also does not have a split on username, for the same reasons as
Liferay Login Request (non-SSO) mentioned previously.

Liferay Signed-in User - Non-UEM

Tags all PurePaths containing Web Request (no filter is specified), provides information about
user’s identity from Liferay’s point of view. Transaction splits on the user attributes (user ID,
screen name and primary email) of the user authenticated into Liferay. Split values are fetched
from HTTP session attributes. .

Please note that for unauthenticated users, Liferay uses a default user object created for given
Liferay instance (not null object).

To analyze all transactions for a particular user where Dynatrace UEM is not available, search a
user name in this view and drill down to PurePaths.

This Business Transaction is not stored in Performance Warehouse due to split on users, which
might generate too many unique values. As a result, data from this transaction will be available
in Dynatrace only temporarily.

Liferay WebServer Document Request

Tags any PurePath containing Web Request which will be serving a file (its binary content) from
Liferay's Document Library through WebServer servlet.

Matches URIs /documents/*.



Liferay WebServer Image Request

Tags any PurePath containing Web Request which will be serving an image (its binary content)
from Liferay through WebServer servlet.

Matches URIs /image/*.

User Action Response Size
Tags every User Action and measures the average size of the transferred data.

Workflow Engine - Kaleo GraphWalker Message Received

Tags every PurePath within which at least one transition was made in the Liferay's Kaleo
Workflow Engine. Measures the time it took to process all transitions within given PurePath.

Liferay HTTP API Request

Tags any PurePath containing Web Request which will be handled by one of the Liferay API
servlets. These are all mapped to URIs starting with /api.

Various APls are available in Liferay, this transaction covers them all: Atom, Axis, JSON, JSON
WS, Spring, Liferay.

AJAX Request

Tags any PurePath containing a Web Request which was made using some modern JavaScript
library, like AlloyUl or jQuery.



Measures

Liferay profile contains a set of custom measures, which are used either in Business
Transactions, dashboards (graphs), incident definitions or to provide additional information
when drilling down through one individual PurePath. Following section provides overview of the
most important custom measures and their use.

Business Transaction measures
Many measures are used within the custom Business Transactions, either as filtres, splits or
calculations.

Portlet measures

As listed in section on Business Transactions, we have a set of transactions which cover the
core Liferay portlets. These are backed by a set of measures providing the filters and splits for
these transactions.

Measures are relying on the instrumentation sensors, mainly on PortletContainerUtil.

Example measures:
e Calendar - render request
e Documents and Media Display - resource request
e Web Content - action request

Liferay Signed-in User measures

Three measures were created to extract the identity of users logged into Liferay:
e User in Liferay ('user.getEmailAddress()’ from HTTP session)
e User in Liferay (‘user.getScreenName()' from HT TP session)
e Userin Liferay ('userld' from HTTP session)

Each measure produces one type of identification of Liferay user, each is value is unique within
all users in one Liferay instance.

Measures are relying on Servlets Sensor Pack and its configuration in application server agents,
see Application Servers (Tomcat, JBoss).

These measures are used for Business Transaction Liferay Signed-in User - Non-UEM and also
to tag User Visits in UEM Configuration.

CMS pages measures
Various measures providing filters and splits to categorize Web Request which will be handled
by Liferay as Content Management System page requests.

There are two ways how to recognize the CMS page URI pattern: external and internal. External
detection relies in the URI as provided by the Web Request. Although this looks like an obvious



choice how to detect CMS page request, due to Liferay’s virtual hosts and friendly URL
mappings, not all requests may be captured.

Internal detection is more reliable, since it's reading the URI based on instrumentation of
Liferay’s CMS servlet, after the virtual host filter and friendly URL mapping was performed by
Liferay. For details, see com.liferay.portal.servlet.FriendlyURLServlet section.

These measures are used in various CMS transactions, see CMS Page Request, CMS Page
Request by Page Type - [page type] and CMS Page Request by Request Type - [portlet phase].

CSS and JavaScript measures

Various measures used to determine if a Web Request is serving CSS or JavaScript content.
Liferay contains several servlets and JSPs generating dynamic CSS and JavaScript based on
passed parameters.

Measures are used in Business Transactions CSS Client Side, CSS Server Side, JavaScript
Client Side and JavaScript Server Side.

Liferay Login Method (non-SSO)

Used as a filter to match Liferay authentications using username and password, provided by the
user, most likely through configured login portlet like the core Sign In portlet.

This measure uses instrumentation on method AuthenticatedSessionManagerUtil.login(), since
this method has to be (by Liferay contract) used by any portlet which authenticates user using
explicit credentials (username and password).

Measure is used by transaction Liferay Login Request (non-SSO).

Liferay Login URI (SSO)
Used as a filter to match Liferay SSO authentications, which all occur on URI /c/portal/login. All
Liferay SSO filters are mapped to this URI, together with Remember Me autologin filter.

If user can be logged in using one of the filters, redirect is sent to user's landing page. If no filter
can authenticate the user, redirect is sent to the page which will render the configured login
portlet. This typically is the default, Sign In portlet, but can be changed using Liferay
configuration.

Please note that Remember Me is also mapped to all CMS pages (/web/*, /user/*, /group/*), so
not all auto-logins via Remember Me cookies will go through /c/portal/login.

Measure is used by transaction Liferay Login Request (SSO).




Liferay Logout Request
Used as a filter to match Liferay DXP logouts on URI /c/portal/logout. Both manually and SSO
authenticated users are using this URI to log out of Liferay DXP.

Measure is used by transaction Liferay Logout request .

Liferay WebServer Documents URI
Used as a filter on Web Requests which will be handled by Liferay Web Server servlet.

Matches URIs starting with /documents/, used to serve Document Library documents and their
thumbnails, for example in Documents and Media portlet.

Measure is used in Business Transaction Liferay WebServer Document Request.

Liferay WebServer Images URI
Used as a filter on Web Requests which will be handled by Liferay Web Server servlet.

Matches URIs starting with /image/, used to serve dynamically stored images, like user
account’s pictures.

Measure is used in Business Transaction Liferay WebServer Image Request.

XHR by X-Requested-With header

Provides a way to determine if a Web Request should be categorized as a regular or AJAX
request.

The measure matches Web Requests on HTTP header X-Requested-With with value
XMLHttpRequest. All modern frameworks (YUI, AlloyUl, jQuery) add this header when making
an AJAX call.

Measure is used in Business Transaction AJAX Request.

Liferay - EhCache - [cache name] - [cache metric]

A set of measures to capture statistics of Liferay EhCache caches through JMX. Can be found
in Measures -> Server Side Performance -> Agent based Measures -> Custom JMX.

For every cache, we are capturing three metrics and calculating fourth:
e MemoryStoreObjectCount - number of elements in cache
e MaxElementsinMemory - maximal size of the cache
e InMemoryHitPercentage - rate of success for cache element being present in cache
when requested
e cache occupancy rate (in-memory) - calculated from first and second metric



Following caches are covered by these measures:

e com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portal.model.impl. GroupImpl
com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portal. model.impl.Layoutimpl
com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portal. model.impl.LayoutSetImpl
com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portal.model.impl.RoleImpl
com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portal. model.impl.UserGroupRolelmpl
com.liferay.portal.kernel.dao.orm.EntityCache.com.liferay.portal. model.impl.Userlmpl
com.liferay.portal.security.permission.PermissionCacheUtil PERMISSION
com.liferay.portal.security.permission.PermissionCacheUtil_PERMISSION_CHECKER _BAG
com.liferay.portal.security.permission.PermissionCacheUtil_ RESOURCE_BLOCK IDS BAG

Dynatrace automatically fetches new value for each JMX metric every 10 seconds, using
configured MBean definitions.

Liferay utilizes a large number of caches (300+), these measures only capture basic set of
essential caches. Measures for additional caches can be added following provided pattern, if

necessary.

Measures are used in Liferay Ehcache Metrics dashboard and related views.

Database pool measures

Although Liferay uses one database schema to store its relational data, two data sources are
used to query the database: main Liferay data source and counter data source. The use of two
data sources is necessary to prevent deadlocks (see comment on property counter.jdbc.prefix
inside portal.properties for details).

Liferay will by default create its own internal data sources, with all connections pooled for better
performance, or it can get them as a JNDI resource from the application server. Liferay will then
rely on application server’s configuration - that the retrieved data sources will be defined with
proper connection pooling.

Following measures cover the most commonly used pool implementations which can be used in
Liferay. All measures can be found in Server Side Measures -> Agent based Measures, in a
category denoting in which application server will data for this measure be available.

Custom JMX category

Liferay - JDBC Pool - C3p0, All PooledDataSource beans (sum) - [metric]

A set of measures reporting metrics for all C3p0 pools present in the JVM environment. If
Liferay is using C3p0 pool of database connections (either as internal pool or through JNDI) and
there is no other pool of this type defined, the measure will return data for the Liferay connection
pools.




If there are more C3p0 pools, the data will be aggregated. C3p0 generates unique identifier for
every pool after its start, not related to the the pool’s resource name (the JNDI name under
which it's published in the application server), so it's not possible to target only the Liferay pools.

Liferay - JDBC Pool - HikariCP, All Pool beans (sum) - [metric]
A set of measures reporting metrics for all Hikari pools present in the JVM environment, typically
created internally by Liferay.

If there are more Hikari pools than the Liferay ones, the data will be aggregated. Hikari
generates unique identifier for every pool after its start, not related to the the pool’s logical
name, so it's not possible to target only the Liferay pools.

Liferay - JDBC Pool - TomcatJdbcPool, All Pool beans (sum) - [metric]

A set of measures reporting metrics for all Tomcat pools created by Liferay internally. This
metric is exposed by Liferay itself, so no data from other pools should be reported in this
measures.

Tomcat category

JDBC Pool - TomcatJdbcPool "jdbc/LiferayPool” - [metric]
A set of measures reporting metrics for a Tomcat pool named ‘jdbc/LiferayPool”, which is the
default JNDI name of the external Liferay pool as used in Liferay bundles.

If your Liferay installation is using external Tomcat pool, but it's named differently, you will have
to update the measures accordingly or create a set of your own measures mirroring the existing
ones.

JDBC Pool - TomcatJdbcPool "jdbc/LiferayCounterPool” - [metric]
Same as previous, only reporting measures for a differently named JNDI resource, allocated for
Liferay’s counter data source.

JBoss category

JDBC Pool - ManagedConnectionPool, all Pool beans (sum) - [metric]
A set of measures to get current number of busy connections and maximal size of the pool,
together with the rate between the two.

Please note that JBoss publishes only a very limited database pools data into JMX (if any), so
the measures might not report valid information.

Thread pools measures

Liferay fully relies on its application server to provide the thread pools for HTTP / AJP
connectors, which are processing all WebRequests. The naming and configuration of the pools
depends on the application server settings, the following measures are reflecting the default
setup and naming as used in Liferay bundles.



All measures can be found in Server Side Measures -> Agent based Measures, in a category
denoting in which application server will data for this measure be available.

Tomcat

ThreadPool - Connector "ajp-nio-8009" - [metric]
These measures captures the number of busy threads and maximal size of the pool, together
with rate between the two, for the default Tomcat AJP NIO connector listening on port 8009.

If your AJP connector is configured differently (different port number, using BIO, APR...) the
name of the JMX bean might be different and you might need to update the measures
accordingly. See Tomcat documentation for details.

ThreadPool - Connector "http-nio-8080" - [metric]

These measures captures the number of busy threads and maximal size of the pool, together
with the rate between the two, for the default Tomcat HTTP NIO connector, listening on port
8080.

If your HTTP connector is configured differently (different port number, using BIO, APR...) the
name of the JMX bean might be different and you might need to update the measures
accordingly. See Tomcat documentation for details.

JBoss

ThreadPool - all pools (sum) - [metric]
These measures provide the number of busy and total threads in JBoss thread pools.

Please note that JBoss publishes only a very limited thread pools data into JMX (if any), so the
measures might not report valid information.

Method execution time

We've identified several places in Liferay, where we want to capture precise time it takes to
execute particular method. These measures are then used either in calculations for Business
Transactions or in dashboards. We capture the total execution time for each method, the
method’s time itself including any sub-calls the method makes.

All these measures rely on correctly enabled sensors, see Java Code Instrumentation section.

PortletContainerUtil.[method name] Time

Whenever a portlet request has to be processed by Liferay, static utility class
PortletContainerUtil is responsible for the whole execution. Concrete method is chosen
based on the portlet phase which the portlet request belongs to.

We're capturing time of following methods:
e PortletContainerUltil.processAction()



e PortletContainerUltil.processEvent()
e PortletContainerUtil.render()
e PortletContainerUtil.serveResource()

All the measures rely on the sensors as outlined in instrumentation section, chapter
com.liferay.portal.kernel.portlet.PortletContainerUtil.

Please note that processEvent () does not have its sensor active by default. If you want to
capture time of portlet events processing, enable the sensor for this method.

Liferay Search Engine - [method name] Time

A set of measures capturing the execution time in several places of Liferay Search API. Covers
possible Search Engine implementations as supported by Liferay (Elasticsearch or Solr).

Following measures were created:
e [iferay Search Engine - FacetedSearcherlmpl.search() Time
o method called by Search portlet (portletld=
com_liferay portal_search_web_portlet SearchPortlet)
o delegates to TndexSearcherHelperUtil.search ()
e [iferay Search Engine - IndexSearcherHelperUtil.search() Time
o delegates to configured Search Engine implementation (Elasticsearch or Solr)
e [Liferay Search Engine - ElasticsearchindexSearcher.search() Time
o method called by TndexSearcherHelperUtil if Liferay is configured to use
Elasticsearch
e [iferay Search Engine - SolrindexSearcher.search() Time
o method called by ITndexSearcherHelperUtil if Liferay is configured to use
Solr

Measures rely on the sensors as outlined in the instrumentation section, chapter
FacetedSearcherlmpl and onward.




Agent Sensors Packs and their configuration

Some measures in Liferay profile rely on Dynatrace Sensors Packs and their configuration for
connected agents, following section lists the changes from defaults.

Application Servers (Tomcat, JBoss)

Liferay runs on variety of Java application servers, appropriate Dynatrace application server
agent has to have the Serviets Sensor Pack enabled, which is true by default.

Also, in configuration of this Sensor Pack, following session attributes have to be captured by
Dynatrace, since they are used in Liferay Signed-in User measures and in UEM Configuration:
e session attribute USER with accessor getEmailAddress ()
e session attribute USER with accessor getScreenName ()
e session attribute USER_ID with no accessor

Sessions attributes do not have to be captured in all filters and servlets, just on the entry points,
so the checkbox Capture details in all filters and servlets can be left unchecked (if not needed
for other purposes).



UEM Configuration

All User Visits are tagged by one of the measures providing identity of the users signed into
Liferay. These measures rely on Serviets Sensor Pack and its configuration in application server
agents, for details see Liferay Signed-in User measures or sensors configuration for Application
Servers (Tomcat, JBoss).

One of the following measures should be selected to tag the user visits:
e Userin Liferay ('user.getEmailAddress()' from HTTP session) (default)
o will tag visits using the primary email address from the user’s account in Liferay
o emails can be chosen by each user, imported from external system (LDAP) or
automatically generated, depending on Liferay’s configuration
o primary email is always unique in one Liferay instance
e Userin Liferay ('user.getScreenName()' from HTTP session)
o will tag visits with screen name from the user’s account in Liferay
o screen name is either chosen by each user, imported from external system
(LDAP) or automatically generated, depending on Liferay’s configuration
o screen name is always unique in one Liferay instance
e Userin Liferay (‘userld' from HTTP session)
o will tag visits with userld of user’s account in Liferay
o userld is a natural number generated by Liferay when a user account is created
o userld is always unique in one Liferay instance

The measure used for UEM visits can be changed in Liferay profile details -> User Experience
-> Default Applications (or selected one) -> General / Tag visits with.



Java Code Instrumentation (Sensors)

Many custom measures in Liferay profile are depending on instrumentation of methods in
various places or Liferay code base. All Liferay related bytecode changes are defined in Sensor
Group named Liferay. Following is the list of classes and methods which are actively
instrumented.

Sensor Group also contain a few inactive sensors, which are not needed by default, but can be
activated if related measures are needed.

com.liferay.portal.kernel.portlet.PortletContainerUtil
This class is used to handle all portlet requests in Liferay. It delegates the execution to the
portlet implementation class and its JSR 286 methods.

PortletContainer class follows the standard Liferay pattern xutil (static methods facade)
+ X (interface) + Ximpl.

All instrumented methods capture the third argument, to get the information which portlet
instance is being rendered / is processing action / is serving portlet resource. Sensors capture
liferayPortlet.getPortletId() from the third argument, which will be either:
e the portlet name from portlet.xml (or the OSGi annotation) for non-instanceable portlets
o example: com_liferay login_web_portlet _LoginPortlet
e the portlet name + instanceld for instanceable portlets
o example:
com_liferay _wiki_web_portlet WikiDisplayPortlet INSTANCE_4bLTXEXIQNs

render()

void render (httpRequest, httpResponse, liferayPortlet) handles portlet
render phase requests. Method will be called for every portlet instance which is being rendered
in Liferay portlet container. Portlet can be rendered either on server side as part of a CMS page
request or using AJAX for ajaxable portlets, on URI /c/portal/render_portlet.

Method can be invoked once or multiple times for every PurePath, depending on how many
portlets need to be rendered - one portlet render URL can trigger rendering of multiple portlets,
depending on portlet window states.

Every method invocation within one PurePath will have a unique portlet instance object, with
unique portletld being captured (see above).

processAction()

void processAction (httpRequest, httpResponse, liferayPortlet) handles
portlet action phase requests. Method will be called whenever a portlet action URL is being
processed by Liferay.



Method is invoked at most once every PurePath, for the portlet instance to which the action URL
belongs.

serveResource()

void serveResource (httpRequest, httpResponse, liferayPortlet) handles
portlet resource phase requests. Method will be called whenever a portlet resource URL is
being processed by Liferay.

Method is invoked at most once every PurePath, for the portlet instance to which the resource
URL belongs.

com.liferay.portal.kernel.security.auth.session.AuthenticatedSessionManag
erUtil

login()

void login (httpRequest, httpResponse, String userName, String
password, boolean rememberMe, String authType) isthe main method used by
Liferay to authenticate users using username and password (non-SSO authentication). It is
called from the stock Sigh In portlet and should also be used by any other custom login portlet,
which would be used as a way of authenticating users into Liferay.

Sensor is capturing third argument, username. Sensor does not capture password (fourth
argument), since it's passed to this method in plain text.

com.liferay.portal.workflow.kaleo.runtime.internal.graph.messaging.PathEl

ementMessagelistener

Listener class from kaleo-web plugin which handles all messages sent to destination
liferay/kaleo_graph_walker on Liferay Message Bus. Messages are sent to this destination
whenever there’s a need to make a transition in one of the workflow instances.

Listener asynchronously receives the message and executes required transition, together with
sending additional messages, if the transition results into one or more transitions to be made.

doReceive()

void doReceive (message) receives the message with the description of the transition to
be made and executes it. Argument is not captured.

This method starts a new PurePath if necessary, since the workflow engine is fully
asynchronous. Transitions can happen without any user interaction, for example as a result of a
timer event.



com.liferay.portal.servlet.FriendlyURLServlet

This servlet handles all requests to Liferay CMS pages. It is mapped in Liferay to handle
patterns /web/*, /group/* and /user/* (see liferay-web.xml). We instrument this servlet to be able
to capture all requests which will be handled as Liferay CMS page request.

It's important for Dynatrace monitoring to filter CMS URIs using this method and not just
externally on Web Request and the URI that gets passed in the HTTP requests (external URI).
The external URI may not contain any of the mappings mentioned above and neither the site
friendly URL key (second part of the URI). This may be supplied by one of Liferay filters, for
example based on a virtual host mapping configured for Liferay sites.

Examples of external vs. internal URIs:
e hitp.//hr.company.com
o external URI is empty
o internal URI will be /web/hr if there is a site with friendly URL hr which has its
public pages mapped to a virtual host hr.company.com
e hitp.//customers.company.com/home
o external URI is /home
o internal URI will be /group/customers/home if there is a site with friendly URL
/customers which has its private pages mapped to a virtual host
customers.company.com and there is a private page /home
e hitp://johndoe.com/welcome
o external URI is /welcome
o internal URI will be /user/john.doe/welcome if there is a user’s site with friendly
URL john.doe which has its private pages mapped to a virtual host johndoe.com
and contains a page /welcome
e hitps://www.liferay.com/web/quest/home
o external URI is /web/guest/home
o internal URI is the same as external, since it starts with one of the recognized
static patterns (/web)

service()

void service (httpRequest, httpResponse) is the standard Serviet APl method,
which gets invoked for every HTTP request served by this servlet. First argument is captured
with accessor httpRequest.getRequestURI () , which gives us the complete infernal URI
the way Liferay application sees it, after any internal forwards or rewrite rules have been applied
by Liferay filters.

The value captured from first argument will typically be:
e /web/guest
o request to site guest without specifying the page, just telling Liferay we want to
fetch public page


http://hr.company.com/
http://customers.company.com/home
http://johndoe.com/welcome
https://www.liferay.com/web/guest/home

o results into the first available page (from site guest) being rendered
e /web/guest/blogs
o request to public page blogs in site guest
e /user/john.doe/welcome
o request for private user page welcome owned by user john.doe
e /group/hr/benefits/-/blogs/how-to-get-benefits
o request for private site page benefits in site hr, with portlet friendly URL mapping
/-/blogs/how-to-get-benefits.

com.liferay.portal.search.facet.internal.faceted.searcher.FacetedSearcherl
mpl

This class is used by Search portlet to return the documents matching the keywords and other
search inputs (facets values).

doSearch()

Hits doSearch (searchContext) is used to form a search query based on the inputs
provided in Search portlet. Method delegates to IndexSearcherHelperUtil.search() .

com.liferay.portal.kernel.search.IndexSearcherHelperUtil

Static utility class, determines which search engine was configured in Liferay (default
Elasticsearch or Solr) and delegates the search to appropriate implementation of selected
search engine.

search()

Hits search (searchContext, query) is called from FacetedSearcherImpl to get
search results from search engine configured in Liferay.

com.liferay.portal.search.elasticsearch.internal.ElasticsearchindexSearcher

Implementation of Liferay search engine using Elasticsearch (ES). It comes with Liferay out of
the box and is enabled until another search engine plugin is deployed into Liferay (like
solr-web).

search()

Hits search (searchContext, query) is returning the matching documents from
embedded ES (or external ES server, if configured), using ES binary API to issue the search
request and get results.

com.liferay.portal.search.solr.internal.SolrindexSearcher

Implementation of Liferay search engine using Solr. Solr integration will be enabled in Liferay
only after Solr plugin (solr-web) is deployed into Liferay.

Liferay uses Solr HTTP API to query Solr, since the search servers are typically not running on
the same VM as the application server nodes with Liferay.



search()
Hits search (searchContext, query) is returning the matching documents from Solr,
using Solr HTTP API to issue the search request and get results.



Dashboards

For details about the individual Dashboards in the fastpack, please refer to the Dynatrace
Liferay Fastpack page.

Resources

1. Portlet Specification 2.0 (JSR 286): https://jcp.org/en/jsr/detail ?id=286
2. Understanding the Java Portlet Specification 2.0 (JSR 286):
http://www.oracle.com/technetwork/java/jsr286-141866.html
3. Liferay Digital Experience Platform (DXP):
https://www.liferay.com/digital-experience-platform
4. Liferay Developer Network: https://dev.liferay.com
o User & Admin:

https://dev.liferay.com/develop/tutorials?p_p_id=2_WAR_knowledgebaseportlet&

p_p_lifecycle=0&_2_WAR_knowledgebaseportlet_kbFolderUrlTitle=7-0
o Developer: https://dev.liferay.com/develop/tutorials
5. Tomcat 8.0 Connectors:
o https://tomcat.apache.org/tomcat-8.0-doc/connectors.html
o https://tomcat.apache.org/tomcat-8.0-doc/config/ajp.html
o https://tomcat.apache.org/tomcat-8.0-doc/config/http.html
6. JBoss Enterprise Application platform 6.4: Administration and Configuration Guide:

https://access.redhat.com/documentation/en-US/JBoss Enterprise Application Platform

[6.4/html-single/Administration and Configuration Guide/



https://community.dynatrace.com/community/pages/viewpage.action?title=Liferay+Portal+FastPack&spaceKey=DL
https://community.dynatrace.com/community/pages/viewpage.action?title=Liferay+Portal+FastPack&spaceKey=DL
https://jcp.org/en/jsr/detail?id=286
http://www.oracle.com/technetwork/java/jsr286-141866.html
https://www.liferay.com/digital-experience-platform
https://dev.liferay.com/
https://dev.liferay.com/develop/tutorials?p_p_id=2_WAR_knowledgebaseportlet&p_p_lifecycle=0&_2_WAR_knowledgebaseportlet_kbFolderUrlTitle=7-0
https://dev.liferay.com/develop/tutorials?p_p_id=2_WAR_knowledgebaseportlet&p_p_lifecycle=0&_2_WAR_knowledgebaseportlet_kbFolderUrlTitle=7-0
https://dev.liferay.com/develop/tutorials
https://tomcat.apache.org/tomcat-8.0-doc/connectors.html
https://tomcat.apache.org/tomcat-8.0-doc/config/ajp.html
https://tomcat.apache.org/tomcat-8.0-doc/config/http.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Administration_and_Configuration_Guide/
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Administration_and_Configuration_Guide/

